
of the Stanton and Gibbs numbers; Pc, fluctuation value of the Peclet number, characterizing 
the ratio of the mean and fluctuation components of crystal growth rate; p, Fourier trans- 
form variable; Q, mass flux; r, r,, radii of crystal and critical nucleus; t, time; u, dimen- 
sionless supersaturation; V, function introduced in (2); St, Stanton number; 6, mean rate of 
crystal growth; y(r), rate of crystal extraction; ~0, F0, F,, coefficients pertaining to 
7(r); P, density of crystal; e, frequency of oscillation. The subscript s denotes quanti- 
ties corresponding to the steady-state regime of crystallization; the superscript ~ denotes 
values on the surface of neutral stability; the index a denotes that a quantity pertains to 
the natural frequency of oscillation; an asterisk denotes averaging over the ensemble; 
brackets denote averaging over time. 
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OPTICAL AND RADIANT CHARACTERISTICS OF 

TUNGSTEN AT HIGH TEMPERATURES 

S. N. Ivashov and A. I. Fisenko UDC 535.338.1 

It is proposed that thermal radiation spectra of solid materials at high temper- 
atures be treated by the method of moments. 

Extensive experimental data have been accumulated on radiant and optical characteris- 
tics of solid materials at high temperatures [1-3]. However, the problem of the theoreti- 
cal treatment of radiant spectra and the related determination of the frequency--temperature 
dependencies of optical constants is still open today. In the present study, a method is 
offered that allows one to recreate the radiant spectra from the integral characteristics 
of the system. The given method has been tested on tungsten. From the generalized Wien 
displacement law, we determine the temperature for the material under investigation. The 
calculated values reproduce well the measurement results. 

In [4], it is proposed that the absorption spectra be treated by the method of moments. 
It has been shown that if the experimental outline is a smooth function then it is well 
reproduced by the asymptotic Edgeworth series. In the present work, a similar method was 
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TABLE i. Temperature Dependence of the Initial and Central 
Moments of the Radiant Spectral Density for Tungsten 

T,K 
too, 10  - 3  

j .  s%c/(m 3 �9 
deg ) 

ml~ i0 II 
Jl(m 3" 
deg 5 ) 

m2 ~ 1024 
J/(sec'm 3. 
deg ~ ) 

- i 0 5  2 m3'I038 I mu, 
J/(sec2"m3 "I J/(sec3"m3 " 
deg 7 ) deg 8) 

1200 
1400 
1600 
1800 
2000 
2200 
2400 
2600 

0,1691 
0,4114 
0,8596 
1,607 
2,759 
4,449 
6,764 
9,879 

0,2359 
0,6426 
1,48 
3,013 
5,59 
9,691 

15,71 
24,39 

O, 5289 
1,7 
4,5 

10,37 
21,59 
42,26 
75,06 

128,6 

0,2811 
0,9811 
2,867 
7,405 

17,34 
40,77 
75,41 

142,4 

O, 6589 
2,768 
9,39 

27,38 
71,04 

188,9 
364 
735,2 

assumed based on the description of the optical and radiant characteristics of the thermal 
radiation of solid materials. 

It has been known [5] that knowledge of a finite number of moments of the spectral den- 
sity of radiation allows one to approximate it in the form of the finite sum 

= ~ ~ ( ~ ) - -  ?~3! ~ (3 ) (~ )+~72  ~ ( 4 1 ( ~ ) _ 1 _ . ~ @ ( ) ( ~ )  , 

where m n = S~nl(v, T) dv; mn= S(v--~)l(V, T) d~ are the initial and central moments of the 

distribution function I(v, T), n = 0, i, 2, 3, 4 .... is the order of the moments; ~=(v--~/o; 

~ =  ml/tno; az = mjmo;  71= mJ(m2)a/2-1/mo ; 72 = mJ(m2)2mo - -  3; ~ (~) = 1/-[/2a exp ( - -  0.5~z). 

The first moment is equal to the area of the distribution, the ratio ml/m 0 is equal to 
the center of gravity ~. The second central moment is related to the width of the distribu- 
tion, and the third, to its asymmetry. The third and the fourth terms of (i) refine the 
form of the function I(v, T) in the tails of the distribution and near its maximum. The 
negative sign of the third central moment shows that the decline of the curve I(v, T) to 
the right from the maximum is considerably sharper than the decline to the left of the maxi- 
mum (~ < Vmax). Strictly speaking, the function I(v, T) is characterized completely only 
by all the moments m n or mn" However, for a single-valued description of all the properties 
of the outline of the thermal radiation spectrum it is sufficient to have 4-5 first moments 
[5]. The values of the moments are calculated on the basis of the experimental curve 
I(v, T). The integration is performed along the entire outline of the radiant spectrum. 

It is characteristic that for thermal radiation, good agreement with experimental data 
is obtained for high temperatures or low frequencies, such that I.I~x~7.2 , where 
x = hv/kT. Such an estimate can be readily obtained in the simplest case of the spectrum 
of an ideal black body, the frequency moments of which are easily calculated and are equal 
to: m0 = 7.64"10-16 T4 J'sec/(m~'deg 4), ml = 6-02"10-5 T5 J/(m3"deg s), m2 = 1"35"i06 T6 
J/(sec'm3"deg6), ma = 5.61"i016 T7 J/(sec2"m3"degT), m4 = 1.07"i02s T8 J/(sec3"m~'deg8) �9 
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Fig. i. Frequency--temper- 
ature dependence of the 
relative error of approxi- 
mation of the radiant spec- 
tral density for tungsten 
by function (i). D, %; 
x = hv/kT. 
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Fig. 2. Temperature dependence of ~ max for six wavelengths: 
i) I = 0.75 ~m; 2) 0.9; 3) 1.5; 4) 3; 5) 4.2; 6) 5 um; dots) 
experimental data, curves) calculated values. T, K. 

Fig. 3. Investigation of the Wien displacement law for tung- 
sten: i) ideal black body; 2) tungsten. 

For the case of an ideal black body, function (i) with the known moments approximates well 
Planck's function [6] in the region 0.8~x~9. 

The position of the maximum of the radiant spectral density can be represented in the 
form rot( ) 

~max - - - -  ' 1 q- ~t m. ~ , (2)  
mo m 1 

where 6z is a real root of the equation 

For  an i d e a l  b l a c k  body,  ~ = - 0 . 4 6 6  and Eq. (2)  w i t h  t h e  known moments assumes t h e  form 
hvmax/kT = 2 .887 .  E q u a t i o n  (2)  d i f f e r s  i n s i g n i f i c a n t l y  f rom t h e  we l l -known e x p r e s s i o n  f o r  
t h e  Wien d i s p l a c e m e n t  law: hvmax/kT = 2 .822 .  The e r r o r  in  t h e  d e t e r m i n a t i o n  o f  t h e  t empe r -  
a t u r e  in  t h i s  c a s e  does  n o t  exceed  2%.' 

Below we w i l l  be c o n c e r n e d  w i t h  t h e  i n v e s t i g a t i o n  o f  t h e  o p t i c a l  and r a d i a n t  c h a r a c t e r -  
i s t i c s  o f  t u n g s t e n .  I n  [ 7 ] ,  a p r o c e d u r e  i s  o f f e r e d  f o r  e s t i m a t i n g  o p t i c a l  c o n s t a n t s  d i r e c t l y  
from the spectral radiating power in which an upper estimate for the absorption coefficient 

for the given radiating power e~ is obtained in the form 

~ma~ = V [ ( 2 - -  ~ ) / eJ~- -  1. (3)  

Next it is pointed out that when the temperature is increased the difference between ~max 

and the experimental value ~ for tungsten decreases. 

In this work, for the description of a high-temperature dependence Xmax , asymptotic 
series (i) is used, which is related to the radiating power entering into (3) via the expres- 
sion gv = I(~, T)/I~ T). According to the experimental data [i], the frequency moments 
of the radiant spectral density for tungsten have been calculated by the method offered in 
[8] and are given in Table i. From the given values of the moments the radiant spectral 
densities (i) were recreated for the eight investigated temperatures. A numerical analysis 
has shown that the calculated values reproduce well the experimental data in the region 
1,1~<x~.~7,2. In Fig. i, a direct estimate of the relative error of approximation is given; 
the accuracy in the investigated region does not fall below 5%. By knowing the calculated 
values of ev, the values of ~max were determined from (3). In Fig. 2, the temperature de 
dependence of the absorption coefficient is given for six wavelengths. The calculated values 
give good quantitative reproduction of the experimental data at high temperatures; the 
latter, in turn, indicates that the approximating equation (i) was a good choice. 
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The temperature dependence of the coordinate of the radiation maximum hvmax/kT obtained 
from Table 1 and Eq. (2) is represented in Fig. 3. As is seen from Fig. 3, Xma x is not con- 
stant (as for the ideal black body) but is linear and is approximated by the equation 

Xmax = hvmax/kT = a2f-bT, (4) 

where a = 5.58; b = -7.09"10 -4 deg -z From Eq. (4), the determination of the tungsten tem- 
perature follows in the form 

T :--a/2b[1--q/l--19,2"lO-~~ (5) 

It follows from (5) that for a single-valued determination of the temperature from the 
experimental data, only precise measurements of the maximum of the radiant spectral density 
are necessary. The accuracy in the determination of the temperature in this case is no 
worse than 1%. We note that Eq. (5) for tungsten apparently can be extrapolated to the 
regions of high and low temperatures. In order to prove this statement, additional experi- 
mental data are required. 

One of the important characteristics of radiation of real bodies is the X-point. The 
coordinate of the X-point is determined by Eq. (6): 

(~, T~) = ~ (~, T~) . . . . .  ~ (~, T~) ( 6 )  

(X is the wavelength of the radiation corresponding to the X-point). The numerical solution 
of Eq. (6) for the eight investigated temperatures gives the value of the coordinate of the 
X-point ~ = 1.276 Hm. The calculated values are in good agreement with the experimental 
data [i]. 

In conclusion we note that the proposed asymptotic Edgeworth series (i) reproduces well 
the experimental values in the intermediate region I.i ~x~ 7.2 only. In order to describe 
the frequency--temperature behavior of the spectrum in the regions x < i.i and x > 7.2 cor- 
rectly, additional studies are required. 

NOTATION 

v, frequency of radiation; ~, x, dimensionless parameters; k, Boltzmann constant; T, 
temperature; h, Planck constant; • , absorption coefficient; c v, monochromatic radiating 
power; I~ T), spectral density of radiation of an ideal black body; ~, wavelength of the 
radiation; ~, relative error of approximation; m n and mn, initial and central moments of the 
distribution function; o, Yz, and ~2, dispersion, coefficient of asymmetry, coefficient of 
the excess of distribution; ~(~), density function of the normal distribution. 
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